منتديات الفيزيائيون العرب

منتدى طلاب جامعة الحسين بن طلال
 
الرئيسيةاليوميةمكتبة الصورس .و .جبحـثالتسجيلالأعضاءدخول

شاطر | 
 

 Rigid body motion

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
المدير العام
كبار الشخصيات
كبار الشخصيات
avatar

عدد الرسائل : 127
العمر : 31
الموقع : http://ahu-club.ahlamontada.com
تاريخ التسجيل : 13/10/2007

مُساهمةموضوع: Rigid body motion   السبت 27 أكتوبر 2007, 11:13 am

Rigid body
motion



A rigid body is a system of particles in which the distances between the
particles do not vary. To describe the motion of a rigid body we use two
systems of coordinates, a space-fixed system X, Y, Z, and a moving system x, y,
z, which is rigidly fixed in the body and participates in its motion.



Let the origin of the body-fixed system be the
body’s center of mass (CM). The orientation of the axes of that system
relative to the axes of the space-fixed system is given by three independent angles.
The vector R points from the origin of the spaced-fixed system to the CM
of the body. Thus
a rigid body is a mechanical system with six degrees of freedom.


Let r denote the position of an arbitrary
point P in the body-fixed system. In the space fixed system its position
is given by r + R, and its velocity is



v = d(R + r)/dt =
dR/dt + dr/dt = V +
W
´
r.


Here V is the velocity of the CM and W is the angular velocity of the body. The
direction of
W is along the axis of rotation
and
W = df/dt.


The kinetic energy of the body is


T = (1/2)Smivi2 = (1/2)Smi(V + W
´
r)2.


We rewrite


T = (1/2)MV2 +
(1/2)
Smi(W2ri2 - (ri)2), M = Smi,
Smiri =
0.



We find T = TCM + Trot,
i.e. the kinetic energy is the sum of the kinetic energy of the motion of the
CM and the kinetic energy of the rotation about the CM. In
component form we write



.


Here





is the inertia tensor. The Wi are the components of W along the axis of the body fixed system.
For a continuous system .



By appropriate choice of the orientation of the
body-fixed coordinate system the inertia tensor can be reduced to diagonal
form. The directions of the axes xi are then called the
principal axes of inertia and the diagonal components
of the tensor are then called the
principal moments of inertia. Then


.


Definitions:






Asymmetrical top:













Symmetrical top:













Spherical top:















Let L denote the angular momentum about the CM of the body.


,


which in component form yields


.


If x1, x2, and x3
are the principal axes of inertia, then



L1 = I1W1, L2 = I2W2, L3 = I3W3.


The Lagrangian of a rigid body is


.





The equations of
motion



The equations of motion of a rigid body are dP/dt
= F, where P = total momentum and F = external forces, and
dL/dt =
t , where L = angular
momentum about CM and
t = total torque produced by
external forces.



Let A be an arbitrary vector and dA/dt
its rate of change with respect to the space fixed axes, d'A/dt its rate
of change with respect to the body fixed axes.



dA/dt = d'A/dt +
W ´ A.


Therefore


dP/dt = d'P/dt +
W ´ P = F and dL/dt = d'L/dt
+
W ´ L = t .


Let the body fixed axes be the principal axes of
inertia of the body. Then



Li = IiWi and d'Li/dt = IidWi/dt,


and we have Euler’s equations:














The Eulerian angles


The orientation of the body-fixed coordinate system
with respect to the space-fixed coordinate system is described by three
angles. These angles are often taken as the Eulerian angles, defined in
the figure.






We can express the components of the angular
velocity
W along the body-fixed axes x,
y, z
in terms of the Eulerian angles and their derivatives.






























Formulas


Center of mass:











رابط هذه الصفحة


http://electron6.phys.utk.edu/phys594/Tools/mechanics/summary/rigid/rigid.htm
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://ahu-club.ahlamontada.com
 
Rigid body motion
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» ملخص شرايين الجسم..summary of body arteries

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتديات الفيزيائيون العرب :: منتديات الفيزياء الجامعية :: فيزياء سنة رابعة :: منتدى الكلاسيكية-
انتقل الى: